
. 

Profiling under UNIX by Patching 

Mat.! Bishop 

October, 1986 

Research Institute for Advanced Computer Science 
NASA Ames Research Center 

RIACS TR 86.24 

Nd7- 1 T U 4 3  (NASA-Tkl-89316) P B O F I L I N G  U6CEE U N I X  EY 
P A T C H I H G  ( N A S A )  17 p CSCL 09B 

Unclas 
G3/61 4 3 9 8 d  

I .. 
I 
I 

Research Institute for Advanced Computer Science 



Profiling under UNIX by Patching 

Matt Bishop 

Research Institute for Advanced Computer Science 
NASA Ames Research Center 

Moffett Field, CA 94035 

A BSTRA CT 

Profiling under UNIX is done by inserting counters into 
programs either before or during the compilation or assembly 
phases. A fourth type of profiling involves monitoring the 
execution of a program, and gathering relevant statistics dur- 
ing the run. This paper looks at  this method and an imple- 
mentation of it, and discusses its advantages and disadvan- 
t ages. 

Introduction 

There is a saying among programmers, “[mlake it right before you 

This involves testing the program, usually by running make it faster”’. 

it on some test data. But how can a programmer be sure that the test 

data really exercises all paths of control, so every statement is executed 

at  least once? And once the programmer is satisfied his program is 

right, how can he tell in what sections of code the program spends most 

of its time? 

Obtaining the answers to these questions require the use of a tool 

called a profiler. This tool will monitor the execution of a program, 

gather statistics on the program execution, and print the results in an 

understandable form. Among the units of a program which can be pro- 
.. 



- 2 -  

filed are functions and source lines; one can think of these as being 

large-grained and fine-grained units, the idea being that one profiles the 

function calls to determine in which function the program spends most of 

its time, and then look a t  a source line profile of the function to deter- 

mine what parts should be rewritten. Several books describe methods for 

using this information to improve program performance 293 . 

There are also two types of statistics that are gathered from profil- 

ing; each has its own uses. The first is timings, which give the number 

of seconds (or clock ticks) spent in each unit. These statistics must be 

read with an understanding of factors that corrupt the timings. Since 

instructions are usually executed far faster than one clock tick per instruc- 

tion, timings are rarely exact; for example, if a subroutine is called and 

returns between clock ticks, the subroutine would not show up in timings. 

Timings also depend on things not related to  the program, such as the 

speed of paging and what parts need to be paged in. So, while timings 

are a useful guide, they are not ideal. The second statistic is counts, 

which give the number of times the relevant unit has been executed. 

Counts have the advantage that they are entirely precise; but since the 

units being counted may vary wildly in complexity, they lack the weight- 

ing that timings provide. 

Timing and counting statistics are both generated in the same way. 

Special instructions are placed between the units being monitored, such as 

function or block entry points. When the program runs, this special code 
. 

increments timers or counters, and when the program ends, the 



- 3 -  

information is saved somewhere. The programmer can then analyze this 

information to see the timings and counts that interest him. 

There are three basic ways to implement profiling programs. The 

first is to modify the compiler to generate the special code; the second is 

to use a preprocessor or postprocessor to insert special code in the source 

program or the assembly language produced by the compiler; and the 

third is to use an execution monitor. Traditionally, UNIXt profiling has 

been done using the first method4. This method has the disadvantage 

that one needs access to the compiler sources to  implement it, and sys- 

tem administrators are as a rule reluctant to  replace a working compiler 

with a locally modified one. It has the advantage that no preprocessing 

or postprocessing is needed to add the instructions, and issues such as 7 

handling the state of the process do not arise since the compiler will deal 

with them. its prob- 

lems are that the postprocessor must preserve condition codes across the 

inserted special code, and in order to work correctly, the postprocessor - 

must have an intimate knowledge of the target computer’s assembly 

language. The problems with preprocessors are different; basically, prepro- 

cessors require that the program be parsed and (where necessary) rewrit- 

ten to prevent the special code being inserted from causing syntax errors. 

These methods have the advantage that one need not modify the compiler 

to use them, since they are not a part of the compiler itself. 

Of late, the second method has also been used5. 

~~ ~ ~~ 

tUNIX is a Trademark of Bell Laboratories. 

. 



- 4 -  

Very little attention has been paid to using execution monitors with 

UNIX thus far. This paper will examine the design, implementation, and 

experiences using such a tool. First, we shall discuss how an execution 

monitor works, and then describe the implementation of this tool, and 

some experiences with its use. 

How an Execution Monitor Works 

6 Use of an execution monitor involves a technique called patching . 

When the execution monitor runs, it starts the program to be profiled 

and immediately suspends it. The monitor then saves instructions at  the 

beginning of each unit of the program to be profiled, and replaces them 

with instructions that will cause a fault when executed. When this is 

done, the execution monitor restarts the program to be profiled. When- 

ever a unit is reached, a fault occurs, and control is returned to the exe- 

cution monitor; the execution monitor determines if the fault was caused 

by entry into a unit, and if so increments the counters and timers associ- 

ated with that unit. It then puts back the instruction that it had ear- 

lier replaced, and single steps through the program being profiled until 

some other instruction is executed. The instruction that causes a fault 

then replaces the instruction earlier put back, and the execution monitor 

restarts the program being profiled. 

The technique ~f medifying the process space of the piacess being 

profiled is called patching. It is a very powerful technique, and is used . 
by dynamic debuggers to enable a programmer to watch what happens as 



- 5 -  

a program is being executed. Depending on the amount of information 

in the symbol table of the object code of the program that is to be pro- 

filed, the profiler can print various types and .amounts of information. 

For example, if line numbers were not present and only functions were, 

the source code could not be profiled but functions could be. 

Two questions about this patching procedure immediately come to 

mind. When the illegal instruction and the instruction it replaced are 

exchanged, and the traced program is single stepped, the instruction might 

be re-executed. If this happened, the line count would be incorrect. To 

avoid this error, the execution monitor must check the program counter 

after the single stepping. If the replaced instruction were re-executed, it 

increments the counter for that instruction and repeats the procedure. 

When the program counter shows that some other instruction has been 

executed, the illegal instruction is restored. 

The second question is related. Implicit in this method is the 

assumption that the instruction causing the fault does not change the 

state of the traced process, and in particular the condition codes. Usu- 

ally, this is no problem since illegal instructions cause faults not reflected 

in the condition codes: if there is no such instruction, however, matters 

become far more complicated. If it is possible to write into text space, 

the execution monitor should substitute three instructions rather than one: 

n copy condition code register to location n + k, 

n + k l  execute illegal instruction 

. 



- 6 -  

n + k 2  store the former condition codes here 

Then, before allowing the program to continue, the execution monitor 

would have to restore the condition codes in location n + k, and then 

replace the contents of location n with what was originally there, and 

copy these instructions over the next ones. This process would have to 

continue until the instruction at  location n + k, is passed, at  which 

point everything can be restored as it was before the instruction at  n 

was executed. 

Once the program has finished execution, the execution monitor must 

print the results. There are two ways to do this. The traditional 

method of other profilers running under UNIX has been to  dump the 

results in an intermediate file (called mon.out or something similar) and 

provide another program to print the data there in an intelligible format. 

The second is to add the code to print the results to the program being 

profiled. The first approach provides more flexibility, because users can 

examine the raw data directly; no doubt this is why UNIX profilers tend 

to use it. However, UNIX profilers work with a fairly small amount of 

data (namely, counts and timings of function calls) rather than with large 

amounts of data such as counts for each line. Moreover, for an execu- 

tion monitor. adding code to make an intelligible printout adds nothing 

to the program being traced, since this code resides in the monitor itself. 

So the situation is not so clear-cut here. . 



- 7 -  

An Implementation of an Execution Monitor 

The execution monitor described above is being implemented in two 

steps, the first of which has been completed and the second of which is 

in progress. The first version, which we shall discuss now, counts the 

number of times each source line is executed; the second version allows 

functions to be counted as well. The basic structure of both versions is 

the same; we shall highlight the differences when we discuss the second 

version. The first version runs on both V A X t  and MC 68000 versions of 

4.2 BSD. The second version is being implemented on a VAX running 

4.3 BSD. 

The first step is to locate the beginnings of units to be counted 

within the traced program. This is done by looking at the symbol table. 

When a special debugging option is given, the 4.2 BSD C compiler 

creates symbol table entries for both source file names and line numbers, 

and with each line number provides the address of the first machine 

instruction in that line. One complication is that several line number 

entries may have the same address, for example if a multiline comment is 

present. These are loaded into an array of structures of the form 

t VAX is a Trademark of Digital Equipment Corporation. 
. 



- 8 -  

struct { 
union { 

unsigned t Val; 
ADDRESS t- tadd; - 

1 t-lpos; 
WORD t word; 
WORD t-ill; 
int t lno; 
char-*t - fnm; 
int t - count; 

1; 
The types ADDRESS and WORD are 

/* value in symbol table */ 
/* same, treated as an address */ 
/* where the line occurs */ 
/*  the word that’s there */ 
/* the word with illegal inst. */ 
/*  line number 
/*  pointer to file name */ 
/* count f rom ezecution monitor */ 

defined to be the types of an 

address and a word on the current machine; for example, on a VAX, 

these are 

typedef unsigned int WORD; 
typedef WORD *ADDRESS; 

/* what a machine word is */ 
/* what a machine address is */ 

The field t - word will hold the word at that location, and the field t - ill 

will hold the same word but with the instruction being replaced by an 

illegal instruction. All lines are found in one pass over the symbol table. 

The next step is to replace the instructions a t  the beginning of each 

line with the illegal opcode. In this implementation, we use the opcode 

LDPCTX (“LoaD Process C ~ n T e x t ” ~ ) ,  which is a privileged operation 

(and when executed by a user’s program will cause a fault) but which 

does not alter the condition codes after the fault. First. the process to  

be profiled is started after marking that it is to be traced; on the VAX,  

this causes a fault after the first instruction of that process is executed. 

At this time? words are copied from t.he child process’ m e r m r y  into the 

. array of structures described above, and replaced with words modified 

with the illegal instruction at  the address indicated by the line number. 



- 9 -  

(Use of words rather than bytes is necessary, even on a byte-addressed 

machine like the VAX, because the ptrace call8 reads and writes only 

words.) 

Now, the profiled process is ready to run. It is signaled to continue, 

and the execution monitor waits for a fault or termination. If the child 

terminated, the program analyzes the results. If it faults, the execution 

monitor determines what signal caused the fault and where the program 

faulted. If the fault was not an illegal instruction, or the address is not 

that of a line, the execution monitor will attempt to force the child pro- 

cess to continue as though it had received that fault. (This usually 

results in that process terminating, possibly with a core dump.) Otherwise, 

the execution monitor adds 1 to the t count fields of all lines with that 

address in t - lpos. It copies the t - word field of the appropriate entry in 

- 

the array into the traced process’ text space, and then single steps, check- 

ing each step until the instruction has been passed. The appropriate 

t - ill field is copied into the profiled program’s instruction space. Now, 

the new program counter value must be compared to the addresses of the 

line numbers, lest two lines occupy less than one machine word. If this 

is true, the entire procedure is repeated using the new instruction and 

line number. If not, program execution continues. 
, .  . .  I .  

Printing in this version is done by the execution monitor; the user 

can request line counts, a full histogram, or a scaled histogram. The 

basic scheme is the same for all formats - simply traverse the array of 
. 

line numbers and print the counts. In all cases, the usual format is to 



- 10 - 

print the counts followed by the source file lines. Here is a sample of 

output from this program; the program simply generates an array of 1000 

numbers and sorts them using a Shell sort’: 

CTRACE Version 1.3 (July 25, 1983) 

FILE LINE COUNT 
x.c 
x.c 
x.c 
x.c 
x.c 
x.c 
x.c 
x.c 
x.c 
x.c 
x.c 
x.c 
x.c 
x.c 
x.c 
x.c 
x.c 
x.c 
x.c 
X.C 

X.C 

X.C 

X.C 

s.c 
s .c  
X.C 

s . c  
X.C 

S . C  

1 0: #define MAX 1000 
2 0: 
3 0: main() 

5 1: register int i; 
6 1: int list[MAX]; 
7 1: long random(); 
8 1: 
9 1: srandom( getpido); 

10 1: for(i = 0; i < MAX; i++) 
11 1000: list[i] = random(); 
12 1: 
13 1: shell(list, MAX); 
14 1: } 
15 0: 
16  0: shell(v, n) 
17 0: int v[], n; 
18 1: { 
19 1: register int i, j ,  gap, temp; 
20 1: 
21 1: 
22 9: for(i = gap; i < n; i++) 
23 8006: 
24 7319: temp = v[j]; 
25 7319: v[j] = v[j+gap]: 
26 7319: v[j+gap] = temp; 
27 7319: } 
28 1: 
29 1: } 

4 1: { 

for(gap = n/2; gap > 0 ;  gap /= 2) 

for(j=i-gap; j>=O && v[j]>v[j+gap]; j-=gap) { 

Sote that the counts must be interpreted properly. For example, look a t  

the “for” loop in lines 10-11. Even though the count is 1, the test in 

the “for” statement is executed 1000 times; the problem is that the 4.2 

BSD C compiler puts the symbol for the line number at  the machine 

\ 



- 11 - 

instruction generated for the initialization, and the next line number is for 

that  of the loop. Unfortunately, fixing this would require the compiler to 

be changed. 

The Next Version 

This version works on principles similar to the first version, but will 

permit functions in the symbols table to be profiled. This is of more use 

than the profiling of lines, since one need not have compiled the program 

with debugging information, and need not have the source available. 

However, it requires information about how different machines handle 

function calls. Some, such as the MC 68000, begin at  the address stored 

in the symbol table. In this case, the illegal instruction can be placed at 

the address of the function. Others? such as the VAX, begin execution at  

the word after the address of the function (the word at the address is 

used to indicate what registers should be saved, among other things). In 

these cases, the illegal instruction must be placed at  the first word exe- 

cuted upon entry into the function. 

The second difference is that the user will be able to specify what 

lines, source files, and functions arc to be profiled. One of the main 

problems with the first version is that a signal trap occurred on every 

line. In the second version, this will only be true with the specific parts 

that the user wants to  trace. 



- 12 - 

Comparison of Profiling Methods 

The discussion in the introduction pointed out some problems with 

various methods of profiling: having the compiler generate counters and 

timers, preprocessing programs and inserting profiling code; postprocessing 

assembly language output from the compiler and inserting profiling code; 

and using an execution monitor. The question of which method is best 

cannot be answered simply; to  a large degree, it depends on what tools 

are available and what information is desired. 

First, if the user wants to  generate counts for each source line, using 

compiler-generated code is probably not an option, since most UNIX com- 

pilers do not provide such statistics. Preprocessing programs solves the 

problems posed by condition codes, since the compiler takes care of them; 

but such programs require a t  minimum a parser (to ensure adding the 

profiling statements does not produce a syntax error.) Postprocessing has 

the problem with condition codes, and requires a knowledge of the 

machine’s assembly language instructions as well as the code generated by 

the assembler: for example, the type of branch instruction used on many 

machines (such as the VAX) depends on how far a branch may occur. 

Patching requires only that one be able to extract the program counter 

from the address space of the process being traced. So from the pro- 

gramming point of view, patching is easier to program. 

From the user’s point of view, patching is the most flexible method 

but the slowest. Using patching, one can profile one section of the pro- 
. 



- 13 - 

gram, and then profile a completely different section without having to 

recompile the program. None of the other three methods of profiling 

allow this; all would require recompilation. Only patching allows any pro- 

filing without compiling special code; all other methods add code before 

assembly; as a result, to profile using these methods, previously compiled 

programs must be recompiled. While patching will only allow you to 

profile those units saved in the symbol table, in most cases this includes 

functions, which are very often the main units of interest. 

Finally, should the profiled program terminate abnormally (say, with 

a bus error), other UNIX profiling packages will not allow the user to 

obtain a profile because the intermediate file is either not written out or 

corrupt. (Gprof  generated an intermediate file, but core-dumped; prof did 

not generate any intermediate file.) Correcting this problem would not 

always be possible, since some events causing abnormal termination cannot 

be trapped (for example, the signal SIGKILL). An execution monitor, 

however, can easily determine why the profiled process stopped, and since 

the statistics gathered are in the process space of the monitor rather than 

the profiled program, the requisite statistics can be generated. 

A Wish List 

There are a few changes to the kernel that iiripose limits on what an 

execution monitor can do. The major bottleneck is the system call 

ptrace, which is the mechanism used to control the execution of the pro- . 
filed program. Its main problem is that only children may be controlled, 



- 14 - 

and only children started up after the execution monitor has begun can 

be profiled. This poses several problems. First, only the parent part of 

a process that forks can be monitored; children are on their own. 

Second, it is not possible to monitor a program that is already running 

(such as the kernel.) Third, every signal will cause a trap to  the execu- 

tion monitor; it should be possible to instruct the process being profiled 

to treat certain signals normally rather than having the profiled program 

return control to the monitor. Finally, the ptraee mechanism is itself 

cumbersome and slow, and should be replaced with something more 

elegant and faster. Not being able to obtain timing information from a 

child process which has not terminated is also a problem. Were this not 

so, the execution monitor would be able to provide timing statistics as 

well as counts, by obtaining timings at  each unit and subtracting. (In 

some cases, extra illegal instructions would need to be inserted; for exam- 

ple, at  the end of functions as well as at the beginning.) A third useful 

feature would be automatically preserving condition codes when a fault 

occurs. and restoring them when execution resumes. This problem can 

usually be circumvented by choosing the instructions to place in the pro- 

filed process' text space appropriately, but it would be better not to have 

to worry about this a t  all. 

Many of these features would be useful in contexts other than profil- 

ing; for example, in debugging". Some manufacturers of multiprocessing 

machines have already made some of these changes.? 

t For example, the ptrace system call for Dynix 2.0, by Sequent Computer Systems, Inc., will al- 

. 



- 15 - 

Conclusion 

Patching is a very powerful method of profiling. It allows any exe- 

cutable program with a symbol table to be profiled, and the more func- 

tions and source line numbers in the symbol table, the more that can be 

profiled. It does not rely on the existence of either assembly language 

source files or higher level language source files; indeed, even if the source 

is unavailable, the program can be profiled! Its drawback, that it causes 

the profiled program to run very slowly, can be ameliorated by judiciously 

choosing the units, and sections of code, to be profiled. 

References 

1. Kernighan, B. W., and Plauger, P. J., The Elements of Programming 
Style, McGraw-Hill Book Company, New York, NY 01974. 

2. Bentley, J. L., Writing Efficient Programs, Prentice-Hall, Inc., Engle- 
wood Cliffs, N J  01982. 

3. Plum, T., and Brodie, J., Efficient C, Plum Hall, Inc., Cardiff, N J  
01985. 

4. Graham, S. L., Kessler. P. B., and McKusick, M. K., “An Execution 
Profiler for Modular Programs”, Software - Practice and Ezperience 
13(8),  pp. 671 - 685 (Aug. 1983). 

5. Weinberger, P. J., “Cheap Dynamic Instruction Counting”, A T6T Bell 
Laboratories Technical Journal 63(8), pp. 1815 - 1826 (Oct. 1984). 

6.  Plattner, B., and Nievergelt, J., “Monitoring Program Execution: A 
Survey”, Computer 14(11), pp. 76 - 93 (Nov. 1981). 

low decendents of children to be monitored, as well as allowing running programs to be moni- -. 
t ored”. 



- 16 - 

7. -, VAX Architecture Handbook, Digital Equipment Corporation, May- 
nard, MA 01981. 

8. -, UNIX Programmer’s Manual Reference Guide, 4.2 Berkeley Software 
Distribution, Virtual V A X - 1 1  Version, Computer Science Division, 
Department of Electrical Engineering and Computer Science, University 
of California, Berkeley, CA (Mar. 1984), as reprinted by the USENIX 
Association. 

9. Kernighan, B. W., and Ritchie, D. M., The C Programming Language, 
Prentice-Hall, Inc., Englewood Cliffs, N J  01978. 

10. Himelstein, M., and Rowell, P., “Multi-process Debugging”, USENIX 
Summer 1985 Conference Proceedings, Portland, OR (June 1985). 

11. Vander Borght , John, private communication (September 1986). 

. 


